Borel Determinacy
   HOME

TheInfoList



OR:

In
descriptive set theory In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to ot ...
, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a
Borel set In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named ...
is determined, meaning that one of the two players will have a winning
strategy Strategy (from Greek στρατηγία ''stratēgia'', "art of troop leader; office of general, command, generalship") is a general plan to achieve one or more long-term or overall goals under conditions of uncertainty. In the sense of the "art ...
for the game. A Gale-Stewart game is a possibly infinite two-player game, where both players have perfect information and no randomness is involved. The theorem is a far reaching generalization of Zermelo's Theorem about the determinacy of finite games. It was proved by
Donald A. Martin Donald Anthony Martin (born December 24, 1940), also known as Tony Martin, is an American set theorist and philosopher of mathematics at UCLA, where he is an emeritus professor of mathematics and philosophy. Education and career Martin rece ...
in 1975, and is applied in descriptive
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
to show that Borel sets in
Polish space In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named bec ...
s have regularity properties such as the
perfect set property In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a p ...
and the
property of Baire A subset A of a topological space X has the property of Baire (Baire property, named after René-Louis Baire), or is called an almost open set, if it differs from an open set by a meager set; that is, if there is an open set U\subseteq X such th ...
. The theorem is also known for its metamathematical properties. In 1971, before the theorem was proved,
Harvey Friedman __NOTOC__ Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axi ...
showed that any proof of the theorem in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as ...
must make repeated use of the
axiom of replacement In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite ...
. Later results showed that stronger determinacy theorems cannot be proven in Zermelo–Fraenkel set theory, although they are relatively
consistent In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent i ...
with it, if certain
large cardinals In the mathematical field of set theory, a large cardinal property is a certain kind of property of Transfinite number, transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, big ...
are consistent.


Background


Gale–Stewart games

A Gale–Stewart game is a two-player game of perfect information. The game is defined using a set ''A'', and is denoted ''G''''A''. The two players alternate turns, and each player is aware of all moves before making the next one. On each turn, each player chooses a single element of ''A'' to play. The same element may be chosen more than once without restriction. The game can be visualized through the following diagram, in which the moves are made from left to right, with the moves of player I above and the moves of player II below. The play continues without end, so that a single play of the game determines an infinite sequence \langle a_1,a_2,a_3\ldots\rangle of elements of ''A''. The set of all such sequences is denoted ''A''ω. The players are aware, from the beginning of the game, of a fixed payoff set (a.k.a. ''winning set'') that will determine who wins. The payoff set is a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of ''A''ω. If the infinite sequence created by a play of the game is in the payoff set, then player I wins. Otherwise, player II wins; there are no ties. This definition initially does not seem to include traditional perfect information games such as chess, since the set of moves available in such games changes every turn. However, this sort of case can be handled by declaring that a player who makes an illegal move loses immediately, so that the Gale-Stewart notion of a game does in fact generalize the concept of a game defined by a
game tree In the context of Combinatorial game theory, which typically studies sequential games with perfect information, a game tree is a graph representing all possible game states within such a game. Such games include well-known ones such as chess, check ...
.


Winning strategies

A winning strategy for a player is a function that tells the player what move to make from any position in the game, such that if the player follows the function they will surely win. More specifically, a winning strategy for player I is a function ''f'' that takes as input sequences of elements of A of even length and returns an element of ''A'', such that player I will win every play of the form A winning strategy for player II is a function ''g'' that takes odd-length sequences of elements of ''A'' and returns elements of ''A'', such that player II will win every play of the form At most one player can have a winning strategy; if both players had winning strategies, and played the strategies against each other, only one of the two strategies could win that play of the game. If one of the players has a winning strategy for a particular payoff set, that payoff set is said to be determined.


Topology

For a given set ''A'', whether a subset of ''A''ω will be determined depends to some extent on its topological structure. For the purposes of Gale–Stewart games, the set ''A'' is endowed with the
discrete Discrete may refer to: *Discrete particle or quantum in physics, for example in quantum theory * Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit *Discrete group, a ...
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, and ''A''ω endowed with the resulting
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
, where ''A''ω is viewed as a
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
topological product In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seem ...
of ''A'' with itself. In particular, when ''A'' is the set , the topology defined on ''A''ω is exactly the ordinary topology on
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
, and when ''A'' is the set of natural numbers, it is the ordinary topology on
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
. The set ''A''ω can be viewed as the set of paths through a certain
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
, which leads to a second characterization of its topology. The tree consists of all finite sequences of elements of ''A'', and the children of a particular node σ of the tree are exactly the sequences that extend σ by one element. Thus if ''A'' = , the first level of the tree consists of the sequences ⟨ 0 ⟩ and ⟨ 1 ⟩; the second level consists of the four sequences ⟨ 0, 0 ⟩, ⟨ 0, 1 ⟩, ⟨ 1, 0 ⟩, ⟨ 1, 1 ⟩; and so on. For each of the finite sequences σ in the tree, the set of all elements of ''A''ω that begin with σ is a basic open set in the topology on ''A''. The
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
s of ''A''ω are precisely the sets expressible as unions of these basic open sets. The
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
s, as usual, are those whose complement is open. The
Borel set In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named ...
s of ''A''ω are the smallest class of subsets of ''A''ω that includes the open sets and is closed under complement and countable union. That is, the Borel sets are the smallest σ-algebra of subsets of ''A''ω containing all the open sets. The Borel sets are classified in the
Borel hierarchy In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called ...
based on how many times the operations of complement and countable union are required to produce them from open sets.


Previous results

Gale and Stewart (1953) proved that if the payoff set is an
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YF ...
or
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
subset of ''A''ω then the Gale–Stewart game with that payoff set is always determined. Over the next twenty years, this was extended to slightly higher levels of the
Borel hierarchy In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called ...
through ever more complicated proofs. This led to the question of whether the game must be determined whenever the payoff set is a
Borel subset In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named a ...
of ''A''ω. It was known that, using the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
, it is possible to construct a subset of ω that is not determined (Kechris 1995, p. 139).
Harvey Friedman __NOTOC__ Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axi ...
(1971) proved that any proof that all Borel subsets of Cantor space (ω ) were determined would require repeated use of the
axiom of replacement In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite ...
, an axiom not typically required to prove theorems about "small" objects such as Cantor space.


Borel determinacy

Donald A. Martin Donald Anthony Martin (born December 24, 1940), also known as Tony Martin, is an American set theorist and philosopher of mathematics at UCLA, where he is an emeritus professor of mathematics and philosophy. Education and career Martin rece ...
(1975) proved that for any set ''A'', all Borel subsets of ''A''ω are determined. Because the original proof was quite complicated, Martin published a shorter proof in 1982 that did not require as much technical machinery. In his review of Martin's paper, Drake describes the second proof as "surprisingly straightforward." The field of
descriptive set theory In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to ot ...
studies properties of
Polish space In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named bec ...
s (essentially, complete separable metric spaces). The Borel determinacy theorem has been used to establish many properties of Borel subsets of these spaces. For example, all Borel subsets of Polish spaces have the
perfect set property In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a p ...
and the
property of Baire A subset A of a topological space X has the property of Baire (Baire property, named after René-Louis Baire), or is called an almost open set, if it differs from an open set by a meager set; that is, if there is an open set U\subseteq X such th ...
.


Set-theoretic aspects

The Borel determinacy theorem is of interest for its metamethematical properties as well as its consequences in descriptive set theory. Determinacy of closed sets of ''A''ω for arbitrary ''A'' is equivalent to the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
over ZF (Kechris 1995, p. 139). When working in set-theoretical systems where the axiom of choice is not assumed, this can be circumvented by considering generalized strategies known as quasistrategies (Kechris 1995, p. 139) or by only considering games where ''A'' is the set of natural numbers, as in the
axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of ...
. Zermelo set theory (Z) is
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as ...
without the axiom of replacement. It differs from ZF in that Z does not prove that the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
operation can be iterated uncountably many times beginning with an arbitrary set. In particular, ''V''ω + ω, a particular countable level of the
cumulative hierarchy In mathematics, specifically set theory, a cumulative hierarchy is a family of sets W_\alpha indexed by ordinals \alpha such that * W_\alpha \subseteq W_ * If \lambda is a limit ordinal, then W_\lambda = \bigcup_ W_ Some authors additionally r ...
, is a model of Zermelo set theory. The axiom of replacement, on the other hand, is only satisfied by ''V''κ for significantly larger values of κ, such as when κ is a strongly inaccessible cardinal. Friedman's theorem of 1971 showed that there is a model of Zermelo set theory (with the axiom of choice) in which Borel determinacy fails, and thus Zermelo set theory cannot prove the Borel determinacy theorem. The existence of all beth numbers of countable index is sufficient to prove the Borel determinacy theorem.


Stronger forms of determinacy

Several set-theoretic principles about determinacy stronger than Borel determinacy are studied in descriptive set theory. They are closely related to
large cardinal axiom In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
s. The axiom of projective determinacy states that all projective subsets of a Polish space are determined. It is known to be unprovable in ZFC but relatively consistent with it and implied by certain
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
axioms. The existence of a
measurable cardinal In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivisio ...
is enough to imply over ZFC that all analytic subsets of Polish spaces are determined. The
axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of ...
states that all subsets of all Polish spaces are determined. It is inconsistent with ZFC but in ZF + DC (Zermelo–Fraenkel set theory plus the
axiom of dependent choice In mathematics, the axiom of dependent choice, denoted by \mathsf , is a weak form of the axiom of choice ( \mathsf ) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores whi ...
) it is equiconsistent with certain large cardinal axioms.


References

* ** L. Bukovský, reviewer,
Mathematical Reviews ''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also pu ...
, . * ** S. Sherman, reviewer,
Mathematical Reviews ''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also pu ...
, . * * ** John Burgess, reviewer.
Mathematical Reviews ''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also pu ...
, . * **F. R. Drake, reviewer,
Mathematical Reviews ''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also pu ...
, {{MR, 791065.


External links

*
Borel determinacy and metamathematics
'. Ross Bryant. Master's thesis, University of North Texas, 2001.
"Large Cardinals and Determinacy"
at the
Stanford Encyclopedia of Philosophy The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. Eac ...
Determinacy Theorems in the foundations of mathematics